Siemens Perspective on Hydrogen Turbines
Energy System Decarbonization is Necessary

H2-Fueled Gas Turbines Required to Supplement Non-Dispatchable Resources
What Happened Last Month?

Siemens, along with other GT manufacturers made a commitment to hydrogen.
What Is The Commitment? (1)

Now:
- 3-5% hydrogen

2020:
- 20% hydrogen

2030:
- 100% hydrogen

DOE H2 Program provides basis for development
What Is The Commitment? (2)

Call to Action

• Gas turbines required to balance renewables on grid

• Greater speed in the transition

• R&D investment (public and private)

• No favored technologies

Combustion development for retrofit and new builds
Siemens Perspective on Hydrogen Turbines
Barrier to Successful Transition

Approach
- H-Class Technology with Siemens premixed hydrogen combustion system
- Dual Fuel Capability
- Design concept close to a conventional CCPP
- One-on-one configuration
- Triple-pressure Heat Recovery Steam Generator
- Siemens novel SCR system

Power Output
<table>
<thead>
<tr>
<th></th>
<th>60 Hz</th>
<th>50 Hz</th>
<th>400 to 450 MW</th>
<th>580 to 650 MW</th>
</tr>
</thead>
</table>

H₂ Consumption
<table>
<thead>
<tr>
<th></th>
<th>60 Hz</th>
<th>50 Hz</th>
<th>530 t/d</th>
<th>760 t/d</th>
</tr>
</thead>
</table>

CCPP Efficiency
<table>
<thead>
<tr>
<th></th>
<th>> 60%</th>
</tr>
</thead>
</table>

Fuel
- Main: Hydrogen (98 to 99%), NG (1 to 2%)
- Auxiliary: Natural Gas

NOₓ Emission
- DeNOₓ: 2 ppm

Turndown
- 40 % (Gas Turbine Load)

H₂ infrastructure not sufficiently developed for LGTs – Focus shifted to smaller sizes

- No credit taken for use of LiqH₂ fuel as heat sink
- No debit taken for on-site LiqH₂ refrigeration load
- No increase in GT firing temperature over current level
- Minimum use of steam as diluent
- ISO ambient air (15°C, 1.013 bar, 60% rel. hum.)
Where are we right now?
The mission is to burn 100% hydrogen

<table>
<thead>
<tr>
<th>Gas turbine model</th>
<th>Power Output</th>
<th>H₂ capabilities in vol%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGT5-9000HL</td>
<td>567 MW</td>
<td>5</td>
</tr>
<tr>
<td>SGT5-8000H</td>
<td>450 MW</td>
<td>10</td>
</tr>
<tr>
<td>SGT5-4000F</td>
<td>329 MW</td>
<td>10</td>
</tr>
<tr>
<td>SGT5-2000E</td>
<td>187 MW</td>
<td>10</td>
</tr>
<tr>
<td>SGT6-9000HL</td>
<td>388 MW</td>
<td>27</td>
</tr>
<tr>
<td>SGT6-8000H</td>
<td>310 MW</td>
<td>5</td>
</tr>
<tr>
<td>SGT6-5000F</td>
<td>250 MW</td>
<td>25</td>
</tr>
<tr>
<td>SGT6-2000E</td>
<td>117 MW</td>
<td>27</td>
</tr>
<tr>
<td>SGT-A65</td>
<td>60 to 71 / 58 to 62 MW</td>
<td>15 / 10 / 20 / 45</td>
</tr>
<tr>
<td>SGT-800</td>
<td>48 to 57 MW</td>
<td>15 / 10 / 20 / 45</td>
</tr>
<tr>
<td>SGT-A45</td>
<td>41 to 44 MW</td>
<td>15 / 10 / 20 / 45</td>
</tr>
<tr>
<td>SGT-750</td>
<td>40 / 34 to 41 MW</td>
<td>10 / 5 / 15 / 30</td>
</tr>
<tr>
<td>SGT-700</td>
<td>33 / 34 MW</td>
<td>10 / 5 / 15 / 30</td>
</tr>
<tr>
<td>SGT-A35</td>
<td>27 to 37 / 28 to 38 MW</td>
<td>15 / 10 / 20 / 45</td>
</tr>
<tr>
<td>SGT-600</td>
<td>24 / 25 MW</td>
<td>15 / 10 / 20 / 45</td>
</tr>
<tr>
<td>SGT-400</td>
<td>13 to 14 / 13 to 15 MW</td>
<td>10 / 5 / 15 / 30</td>
</tr>
<tr>
<td>SGT-300</td>
<td>8 / 8 to 9 MW</td>
<td>10 / 5 / 15 / 30</td>
</tr>
<tr>
<td>SGT-100</td>
<td>5 / 6 MW</td>
<td>10 / 5 / 15 / 30</td>
</tr>
<tr>
<td>SGT-A05</td>
<td>4 to 6 MW</td>
<td>3 / 15 / 30 / 65</td>
</tr>
</tbody>
</table>

Values shown are indicative for new unit applications and depend on local conditions and requirements. Some operating restrictions / special hardware and package modifications may apply. Any project >25% requires dedicated engineering for package certification.

Higher H₂ contents to be discussed on a project-specific basis.

DOE H₂ Program Combustion System Designed To Fit

Siemens working to support potential demo plant
Our hydrogen combustion experience is built on continuous development experience across the fleet

Example: Medium power range gas turbines SGT-600 to SGT-800

Steady increase of our H₂ admixing capabilities based on continuous improvement of standard DLE burner design. SGT-600 / -700 / -800 all equipped with same burner design 3rd generation DLE.

- SGT-600: 60% H₂
- SGT-700: 55% H₂
- SGT-750: 40% H₂
- SGT-800: 50% H₂ available at ≤ 25 ppm NOx

- Operation on Refinery Fuel Gas with high H₂ content
- Renewable grid support within 10 minutes up to full load
- In combined cycle power plants, BACT is fulfilled with Siemens DLE Hydrogen turbines, e.g. 2ppm NOx, CO, and VOC with a SCR

SGT-600 Test at 79 vol-percent run January 2019 (50% energy content)
Siemens Aeroderivative gas turbines’ high hydrogen fuel capability is built on robust designs and field experience

Inherently Fuel Flexible

Aeroderivative Combustors using diffusion flame technology (WLE) offer the capability to operate on a wide range of gas fuels without the auto-ignition, flashback, and flame stability challenges encountered with DLE designs. Water injection can be added for NOx emissions reduction, and liquid fuel capability is available on all standards.

- **SGT-A65**
- **SGT-A45**
- **SGT-A35 Variants**

AGT Fleet Experience

- **+100k hours** of recorded operation with aeroderivative combustors on high hydrogen fuels (up to 78 vol%) at petrochemical sites in Europe and North America since 1968
- Proven operation on fuels with Wobbe indices from 25 to 80 MJ/m³
- Extensive experience with online swings in gas fuel composition and dual fuel units are capable of online fuel transfers

Development Testing

Atmospheric rig testing completed in 2011 with the SGT-A65 and SGT-A45 combustor (Phase V) using methane-hydrogen mixtures and 100 vol% H₂ to compare emissions characteristics

The 100% hydrogen fuel capability of SGT-A35, A45, and A65 aeroderivative technology has been validated through testing and backed by considerable fleet experience with high hydrogen fuels
Thank You! Questions?

John Marra
H-Frame Gas Turbine Engineering Management
E-mail: john.marra@siemens.com
Phone: 407-736-4190 (Office)